If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+7x-320=0
a = 4; b = 7; c = -320;
Δ = b2-4ac
Δ = 72-4·4·(-320)
Δ = 5169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{5169}}{2*4}=\frac{-7-\sqrt{5169}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{5169}}{2*4}=\frac{-7+\sqrt{5169}}{8} $
| 10(x+1)=70 | | -3.3x+1.5=-8.4 | | 7x-6+18=180 | | -5(1-4p)+1=-24 | | 16-2x=10-8x | | 45x+24=37x+24 | | 18a+5a+5a-21a=14 | | -f/3.2=0.01 | | -10.4+3.2f=5f=4 | | N=5x-23 | | 20c-10c+4c+3c+3c=20 | | M=3x-15 | | 8x-22=9x+33-x | | 20c-10c+3c=20 | | X(2x)+x(3x)=7 | | -46=-5x–11 | | 2X+(y+3)=30 | | 5v-v-3v=20 | | -4x(2x-4)-2x-2=-36 | | a2+9=9 | | 16c-4c-9c+c=12 | | 18p=90 | | 24=m10+32 | | 5-x-2=2(2x+4) | | 3+5x=4x-6 | | -3-7p=-9+5 | | 4=u÷4 | | 2u-u=15 | | (x)(x)=176 | | 5j=-4+6j | | (x)(x)=180 | | k5-13=4 |